The relationship between benzo[a]pyrene-induced mutagenesis and carcinogenesis in repair-deficient Cockayne syndrome group B mice.

نویسندگان

  • S W Wijnhoven
  • H J Kool
  • C T van Oostrom
  • R B Beems
  • L H Mullenders
  • A A van Zeeland
  • G T van der Horst
  • H Vrieling
  • H van Steeg
چکیده

Cockayne syndrome (CS) patients are deficient in the transcription coupled repair (TCR) subpathway of nucleotide excision repair (NER) but in contrast to xeroderma pigmentosum patients, who have a defect in the global genome repair subpathway of NER, CS patients do not have an elevated cancer incidence. To determine to what extent a TCR deficiency affects carcinogen-induced mutagenesis and carcinogenesis, CS group B correcting gene (CSB)-deficient mice were treated with the genotoxic carcinogen benzo(a)pyrene (B[a]P) at an oral dose of 13 mg/kg body weight, three times a week. At different time points, mutant frequencies at the inactive lacZ gene (in spleen, liver, and lung) as well as at the active hypoxanthine phosphoribosyltransferase (Hprt) gene (in spleen) were determined to compare mutagenesis at inactive versus active genes. B[a]P treatment gave rise to increased mutant frequencies at lacZ in all of the organs tested without a significant difference between CSB-/- and wild-type mice, whereas B[a]P-induced Hprt mutant frequencies in splenic T-lymphocytes were significantly more enhanced in CSB-/- mice than in control mice. The sequence data obtained from Hprt mutants indicate that B[a]P adducts at guanine residues were preferentially removed from the transcribed strand of the Hprt gene in control mice but not in CSB-/- mice. On oral treatment with B[a]P, the tumor incidence increased in both wild-type and CSB-deficient animals. However, no differences in tumor rate were observed between TCR-deficient CSB-/- mice and wild-type mice, which is in line with the normal cancer susceptibility of CS patients. The mutagenic response at lacZ, in contrast to Hprt, correlated well with the cancer incidence in CSB-/- mice after B[a]P treatment, which suggests that mutations in the bulk of the DNA (inactive genes) are a better predictive marker for carcinogen-induced tumorigenesis than mutations in genes that are actively transcribed. Thus, the global genome repair pathway of NER appears to play an important role in the prevention of cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mice deficient in the nucleotide excision repair gene XPA have elevated sensitivity to benzo[a]pyrene induction of lung tumors.

This study is focused on chemical induction of lung tumors in xeroderma pigmentosum group A gene (XPA)-deficient mice to clarify the role of nucleotide excision repair (NER) in internal organs. Six-week-old female XPA-/-, XPA(+/-) and XPA(+/+) mice were instilled intratracheally with benzo[a] pyrene (B[a]P). A total of 68 surviving XPA mice treated with B[a]P were examined at month 16. The pulm...

متن کامل

Nickel (II) enhances benzo[a]pyrene diol epoxide-induced mutagenesis through inhibition of nucleotide excision repair in human cells: a possible mechanism for nickel (II)-induced carcinogenesis.

Nickel (II), a ubiquitous environmental and industrial contaminant, is a well-known human carcinogen, particularly in human lung cancer. Although by itself it is a weak mutagen, nickel (II) is able to significantly enhance the genotoxicity of other mutagens and carcinogens, such as polycyclic aromatic hydrocarbons (PAHs) and ultraviolet light. Certain human populations, especially cigarette smo...

متن کامل

Combined oral benzo[a]pyrene and inhalatory ozone exposure have no effect on lung tumor development in DNA repair-deficient Xpa mice.

There is considerable concern about an enhanced risk of lung tumor development upon exposure of humans to polycyclic aromatic hydrocarbons (PAHs), like benzo[a] pyrene (B[a]P), in combination with induced lung cell proliferation by toxic agents like ozone. We studied this issue in wild-type (WT) C57BL/6 mice, the cancer prone nucleotide excision repair-deficient Xeroderma pigmentosum complement...

متن کامل

Defective Transcription-Coupled Repair in Cockayne Syndrome B Mice Is Associated with Skin Cancer Predisposition

A mouse model for the nucleotide excision repair disorder Cockayne syndrome (CS) was generated by mimicking a truncation in the CSB(ERCC6) gene of a CS-B patient. CSB-deficient mice exhibit all of the CS repair characteristics: ultraviolet (UV) sensitivity, inactivation of transcription-coupled repair, unaffected global genome repair, and inability to resume RNA synthesis after UV exposure. Oth...

متن کامل

Enhancement of chemical carcinogenesis in mice by systemic effects of ultraviolet irradiation.

The present study was designed to determine the systemic influence of ultraviolet (UVB) irradiation upon subsequent carcinogenesis induced by benzo(a)pyrene. The source of UV irradiation consisted of six Westinghouse FS-40 fluorescent sunlamps. Female BALB/c mice received five 30-min dorsal UVB radiation treatments per week for 13 wk. At the end of 13 wk, irradiated and unirradiated mice receiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 60 20  شماره 

صفحات  -

تاریخ انتشار 2000